

Who am I

• Been with Oracle since
1993

• User of Oracle since 1987
• The “Tom” behind AskTom

in Oracle Magazine
www.oracle.com/oramag

• Expert Oracle: Database
Architecture

• Effective Oracle by Design
• Beginning Oracle
• Expert One on One Oracle

Worst Practices
For Developers and

DBAs Alike

You Should Probably
Never Question

Authority
Never

Not Ever

(it bothers them when you do)

• Experts are always right
• You know the information is accurate

when the author clearly states:
– It is my opinion...
– I claim...
– I think...
– I feel…
– I KNOW…

• Nothing need be backed up with
evidence

• Things never change
• Counter Cases do not prove anything
• If it is written down, it must be true

“Never Question Authority.”“Never Question Authority.”

You Probably Do Not
Need to Use Bind

Variables

It is so much easier to code without them!

query =
‘select *
 from t
 where x = ?
 And y = ?’
Prepare it
Bind x
Bind y
Execute it
Close it
Too much code!

query =
‘select *
 from t
 where x = ‘||x||’
 And y = ‘||y
Execute it

Look at how efficient I am!

And very secure too!

Enter Username: tom’ or 1=1 –
Enter Password: i_dont_know’ or 1=1 –

Query =
“Select count(*) “ +
“ from user_pw “ +
“ where uname = ‘” + uname + “’” +
“ and pword = ‘” + pword + “’”
Select count(*)
 From user_pw
 Where uname = ‘tom’ or 1=1 – ‘
 And pword = ‘i_dont_know’ or 1=1 – ‘

Performance isn’t a concern

• It is not a problem that a large percent of my
program runtime will be spent parsing. That is ok!

SQL> set timing on
SQL> begin
 2 for i in 1 .. 100000
 3 loop
 4 execute immediate
 5 'insert into t (x,y)
 6 values (' || i ||
 7 ', ''x'')';
 8 end loop;
 9 end;
 10 /
PL/SQL procedure successfully completed.
Elapsed: 00:01:33.85

Performance isn’t a concern

• It is not a problem that a large percent of my
program runtime will be spent parsing. That is ok!

SQL> set timing on
SQL> begin
 2 for i in 1 .. 100000
 3 loop
 4 execute immediate
 5 'insert into t (x,y)
 6 values (:i, ''x'')'
 7 using i;
 8 end loop;
 9 end;
 10 /
PL/SQL procedure successfully completed.
Elapsed: 00:00:04.69

Performance isn’t a concern

• It is not a problem that a large percent of my
program runtime will be spent parsing. That is ok!

• That 95% of my runtime was spent parsing SQL in
a single user test is perfectly OK!

And I’m sure memory utilization is OK
SQL> select case when instr(sql_text, ':') > 0
 2 then 'bound'
 3 else 'not bound'
 4 end what, count(*), sum(sharable_mem) mem
 5 from v$sql
 6 where sql_text like 'insert into t (x,y) values (%'
 7 group by case when instr(sql_text, ':') > 0
 8 then 'bound'
 9 else 'not bound'
 10 end;

WHAT COUNT(*) MEM
---------- ---------- ------------
not bound 6640 56,778,665
bound 1 8,548
SQL> show parameter shared_pool_size
NAME TYPE VALUE
------------------------------------ ----------- --------------
shared_pool_size big integer 152M

And it’ll absolutely scale up!

• Oracle is the most scalable database in the world,
it’ll take care of it.

Run1 latches total versus runs…
Run1 Run2 Diff Pct
13,349,321 548,684 -12,800,637 2,432.97%

Probably
You don’t want to

expose end users to
errors

When others then null;

• End users would never want to know there was a
problem

• Even if the “end user” is really another module
calling you

• Just log it – don’t raise it Begin
 …
Exception
When others Then
 log_error(…);
End;

Probably
The More Generic

You Can Make
Something, The

Better It Is.

Or…

Probably
You Do Not Need to

Actually Design
Anything

Quickly Answer:

• How many tables do you really need?

Quickly Answer:

• How many tables do you really need?
• FOUR at most!

OBJECT
*object_id
name
owner
created
…

ATTRIBUTES
*attribute_id
attribute_name
attribute_type
…

OBJ_ATTR_VALUES
*object_id
*attribute_id
attribute_name
attribute_type
…

LINKS
*object_id1
*object_id2
…

Quickly Answer:

• How many tables do you really need?
• But of course ONE is best!
• And you are industry standard as well!

Create table Object
(object_id number primary key,
 data xmltype);

In case you think I make this stuff up…
From - Wed Nov 08 07:39:19 2006
X-Mozilla-Status: 0001
X-Mozilla-Status2: 00000000
Return-Path: <xxxxx@xxxxx.com>
Received: from rgmum105.us.oracle.com by rcsmt251.oracle.com

with ESMTP id 2180055871162956506; Tue, 07 Nov 2006 20:28:26 -0700
…

id C7431B2F2B; Tue, 7 Nov 2006 20:28:09 -0700 (MST)
Mime-Version: 1.0 (Apple Message framework v752.2)
Content-Type: multipart/alternative; boundary=Apple-Mail-107--34306936
Message-Id: <EDEA1DBE-CF47-4D52-9A91-24CC4A208836@mac.com>
From: Dan XXXXX <xxxxxxx@xxx.com>
Subject: Worst Practices
Date: Tue, 7 Nov 2006 19:28:06 -0800
To: Thomas Kyte <thomas.kyte@oracle.com>
X-Mailer: Apple Mail (2.752.2)
X-Virus-Scanned: by Barracuda Spam Firewall at theedge.ca
X-Brightmail-Tracker: AAAAAQAAAAI=
X-Whitelist: TRUE

In case you think I make this stuff up…

Sorry about the unrequested email, but I couldn't resist...

I read your Worst Practices presentation the other day - Very nice,
hit a bit close to home for comfort in many cases!

Then today I got an email from one of the contract "developers" our
organization deals with, it describes a rewrite of a system that was
rolled out a few years back. It was a bit experimental and was
always problematic - architectural mess - stuff flying around in files
between ftp sites and windows shares and in and out of databases.
I (and my cohort DBA) kept asking "Why doesn't this just stay in a
database and you query it from wherever".

In case you think I make this stuff up…
... BUT It was developed shortly after one of our
architect types had heard of XML, so XML had to be
used, it wasn't really important what it was to be used
for - it was just to be used... and so it was decreed, and
it was made so, and it was good... well until the Xindice
"database" thing started crapping out every few days...
but then some sys admin wrote a script to check and
restart Xindice every few minutes, and it was good
again.... fast forward a few years.... decision is taken to
rewrite and since our Oracle databases don't seem to
crash every seventh minute, move the backend from
Xindice to Oracle....

In case you think I make this stuff up…
Here is the "punch line" from the email describing the
database aspects of the proposed system (slightly edited
to remove reference to specific client):

"My current design for the Oracle-ized (Oracle 10g)
version requires only a single Oracle table, which will
have two columns: a pseudo key (simple varchar2) which
will likely actually contain the path to a corresponding
document in the WebDAV environment, and a document
column of XMLType which will contain the xml for an
individual "notice" within the [[snip]], plus an index on
the pseudo key column."

In case you think I make this stuff up…
Excellent - one table, with a key and
XMLType column - the perfect system... Is
this a a cut and paste off slide 21 of your
Worst Practices ppt or what???

If I could make this stuff up I could quit my
job and work in stand-up.

sigh.

Quickly Answer:

• How many tables do you really need?
• Either ONE or FOUR, not any more…
• You’ll never have to put up with asking the DBA for

anything again!
• End users will never want to actually use this data

except from your application!
• Performance – it should be OK, if not the DBA will

tune the database
• Or we’ll just get a new database if the one we are

using is not fast.

Probably
You want as many

instances per server
as possible

Many Instances

• It’ll be easier to tune of course – each database
can be it’s own unique “thing”

– Multiple dbwr’s would never contend with each other
– Of course there is some magic global view that will

point out areas of contention for us
• Everyone will have their “own” memory

– There won’t be any duplication or increased memory
usage due to this

• A runaway process on one instance won’t be my
problem

Probably
You should reinvent
as many database

features as possible

Reinvent the Wheel

• Writing Code is fun
– Using built in functionality will not demonstrate your

technical capabilities to your manager!
• The builtin stuff only solves 90+% of your extremely

unique, sophisticated, 22nd century needs after all
– It is not good enough

• Besides, you would not want to become dependent
on the vendor

– Much better to be dependent on you after all!
• It must cost less, doesn’t it?

Probably
You Do Not Need To

Test

Testing would be such a waste of time

• It might not break
• So why spend the time trying to make it break
• It probably won’t have any scalability issues
• If you test at all, a single user test on your PC does

as well as a fully loaded test on a server
• If you test at all part 2; testing on an empty

database is just as good as testing on a full one.
• Just do the upgrade, it’ll probably work
• Besides, if I test – they’ll expect it works and if it

doesn’t then I’ll be in trouble

Probably
You Should Only Use

The Varchar
Datatype

Varchar2

• It is so much easier after all
• It would never confuse the optimizer

Datatypes are important

ops$tkyte%ORA11GR2> create table t (str_date, date_date, number_date, data)
 2 as
 3 select to_char(dt+rownum,'yyyymmdd') str_date,
 4 dt+rownum date_date,
 5 to_number(to_char(dt+rownum,'yyyymmdd')) number_date,
 6 rpad('*',45,'*') data
 7 from (select to_date('01-jan-1995','dd-mon-yyyy') dt
 8 from all_objects)
 9 order by dbms_random.random
 10 /
Table created.

ops$tkyte%ORA11GR2> create index t_str_date_idx on t(str_date);
ops$tkyte%ORA11GR2> create index t_date_date_idx on t(date_date);
ops$tkyte%ORA11GR2> create index t_number_date_idx on t(number_date);

Datatypes are important

ops$tkyte%ORA11GR2> begin
 2 dbms_stats.gather_table_stats
 3 (user, 'T',
 4 method_opt=> 'for all indexed columns size 254',
 5 cascade=> true);
 6 end;
 7 /

PL/SQL procedure successfully completed.

Datatypes are important

ops$tkyte%ORA11GR2> select * from t
 2 where str_date between '20001231' and '20010101';

STR_DATE DATE_DATE NUMBER_DATE DATA
-------- --------- ----------- ---
20010101 01-JAN-01 20010101 ***
20001231 31-DEC-00 20001231 ***
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 254 | 11938 | 208 (1)| 00:00:03 |
|* 1 | TABLE ACCESS FULL| T | 254 | 11938 | 208 (1)| 00:00:03 |
--
Predicate Information (identified by operation id):

 1 - filter("STR_DATE"<='20010101' AND "STR_DATE">='20001231')

Datatypes are important

ops$tkyte%ORA11GR2> select * from t
 2 where number_date between 20001231 and 20010101;

STR_DATE DATE_DATE NUMBER_DATE DATA
-------- --------- ----------- ---
20010101 01-JAN-01 20010101 ***
20001231 31-DEC-00 20001231 ***
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 254 | 11938 | 208 (1)| 00:00:03 |
|* 1 | TABLE ACCESS FULL| T | 254 | 11938 | 208 (1)| 00:00:03 |
--
Predicate Information (identified by operation id):

 1 - filter("NUMBER_DATE"<=20010101 AND "NUMBER_DATE">=20001231)

Datatypes are important

ops$tkyte%ORA11GR2> select * from t where date_date
 2 between to_date('20001231','yyyymmdd') and to_date('20010101','yyyymmdd');

STR_DATE DATE_DATE NUMBER_DATE DATA
-------- --------- ----------- ---
20001231 31-DEC-00 20001231 ***
20010101 01-JAN-01 20010101 ***

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	47	3 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	T	1	47	3 (0)	00:00:01
* 2	INDEX RANGE SCAN	T_DATE_DATE_IDX	1		2 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("DATE_DATE">=TO_DATE(' 2000-12-31 00:00:00', 'syyyy-mm-dd hh24:mi:ss')
 AND "DATE_DATE"<=TO_DATE(' 2001-01-01 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))

Varchar2

• Datatypes are overrated.
– They are just fancy integrity constraints after all
– They won’t affect client memory usage at all
– We’ll only put numbers in that string, it’ll be just OK

Probably
You Should Commit

Frequently

Commit Frequently

• Auto Commit is best
– If I didn’t mean for something to be permanent I

wouldn’t have done it after all!
• Definitely commit frequently to save resources and

go faster
– It won’t generate more redo would it?
– It won’t generate more total undo would it?
– Log_file_sync (the wait event observed during commit)

is something the DBA will tune away for us won’t they?

Commit Frequently

• My code won’t fail:

• So we don’t need to make it restartable or anything

For x in (select * from t1)
Loop
 insert into t2 values ..;
 cnt := cnt + 1;
 if (mod(cnt,100)=0)
 then
 commit;
 end if;
End loop;

Probably
You Should Be

Database
Independent

The Promise

• Write Once
– For each database
– They are different

• Deploy Everywhere on anything
– Deploy on specific dot releases
– Of specific databases
– On certain platforms
– (it is a support issue)

• Less Work overall
– More work overall

The Reality

• Write Once
– For each database
– They are different

• Deploy Everywhere on anything
– Deploy on specific dot releases
– Of specific databases
– On certain platforms
– (it is a support issue)

• Less Work overall
– More work overall

The Reality

• Write Once
– For each database
– They are different

• Deploy Everywhere on anything
– Deploy on specific dot releases
– Of specific databases
– On certain platforms
– (it is a support issue)

• Less Work overall
– More work overall

The Reality

• Write Once
– For each database
– They are different

• Deploy Everywhere on anything
– Deploy on specific dot releases
– Of specific databases
– On certain platforms
– (it is a support issue)

• Less Work overall
– More work overall

Probably
You Do Not Need

Configuration
Management Of Any

Sort

We probably do not need CM

• Database code isn’t really code after all
– It is a bunch of scripts
– Scripts are not code really, they are something

less than code
– No need to keep track of the

• Grants, Creates, Alters and so on…
– Besides, we can probably just get it from the

data dictionary
– Because the scratch test database we develop

on is maintained just like a production instance
is!

We probably do not need CM

• “Diffing” databases to see what’s different
schema wise to do application updates

– Is completely acceptable
– Very professional
– Makes it easier to document
– Leads to much better designs
– You don’t really need to know what is changing

between version 1 and 2

Probably
You Do Not Need To

Design To Be
Scalable

Scalability

• Scalability just happens
• Oracle is very scalable

– Therefore, so shall ye be scalable
• It is a shared pool – we all just share it together

– Contention free
• This is really why you probably do not need to test
• Besides, you can just add more

– CPU
– Memory
– Disk

Probably
You do not need to
design to be secure

Security

• Oracle is very secure
• Therefore, we don’t need to be, it just happens
• Besides, it is not as important as having pretty

screens after all.
• And if we add it later,

– I’m sure it’ll be non-intrusive
– And very performant
– And easy to do

DBAs And
Developers Are Just

Different, So Get
Over It

DBA vs Developer vs DBA

The Job of the DBA is…

• Priority #1 is to protect the database from the
developers

• Outlaw features, they might be mis-used
– Views, had a bad experience with a view once…
– Stored procedures, they just use CPU
– Any feature added after version 6
– No feature can be used until it is at least 5 versions old

– software is just like fine wine

The Job of the DBA is…

• It is not your job to educate
• Just say no. You need not explain why, you

are the DBA after all.
• These are perfectly valid reasons to avoid

using a database feature:
– “I heard it was slow”
– “I’ve heard it is buggy”

Developers

• It is true, the DBA is not there to work with you
• Try to find ways to avoid having to work with them, such as..

– Don’t ask any questions
– Do as much as you can outside of the database

• Do not join, you can write code to do that
• Do not use database features, you can write code to do that
• Do not use integrity constraints in the database, you can

write code to do that
• Try to be as generic and general purpose as possible
• And remember – the DBA is responsible for performance,

scalability, and security. You are not.

WARNING

• If you are reading this, without having it presented
to you by me (Tom Kyte)…. Please remember, this
is tongue in cheek – these are worst practices!!!!

	PowerPoint Presentation
	Who am I
	Страница 3
	You Should Probably Never Question Authority Never Not Ever (it bothers them when you do)
	“Never Question Authority.”
	You Probably Do Not Need to Use Bind Variables
	It is so much easier to code without them!
	And very secure too!
	Performance isn’t a concern
	Страница 10
	Страница 11
	And I’m sure memory utilization is OK
	And it’ll absolutely scale up!
	Probably You don’t want to expose end users to errors
	When others then null;
	Probably The More Generic You Can Make Something, The Better It Is.
	Or…
	Probably You Do Not Need to Actually Design Anything
	Quickly Answer:
	Страница 20
	Страница 21
	In case you think I make this stuff up…
	Страница 23
	Страница 24
	Страница 25
	Страница 26
	Страница 27
	Probably You want as many instances per server as possible
	Many Instances
	Probably You should reinvent as many database features as possible
	Reinvent the Wheel
	Probably You Do Not Need To Test
	Testing would be such a waste of time
	Probably You Should Only Use The Varchar Datatype
	Varchar2
	Datatypes are important
	Страница 37
	Страница 38
	Страница 39
	Страница 40
	Страница 41
	Probably You Should Commit Frequently
	Commit Frequently
	Страница 44
	Probably You Should Be Database Independent
	The Promise
	The Reality
	Страница 48
	Страница 49
	Probably You Do Not Need Configuration Management Of Any Sort
	We probably do not need CM
	Страница 52
	Probably You Do Not Need To Design To Be Scalable
	Scalability
	Probably You do not need to design to be secure
	Security
	DBAs And Developers Are Just Different, So Get Over It
	DBA vs Developer vs DBA
	The Job of the DBA is…
	Страница 60
	Developers
	WARNING
	Страница 63

